Understanding the effects of personality traits on the quality of individual ideas on open innovation platforms: a mediated empirical investigation

Understanding the effects of personality traits on the quality of individual ideas on open innovation platforms: a mediated empirical investigation
Lixin Zhou, Zhenyu Zhang, Laijun Zhao, Pingle Yang
Aslib Journal of Information Management, Vol. 76, No. 5, pp.736-757

Online open innovation platforms provide opportunities for product users to participate in the innovation process and contribute their ideas to the platform. Nonetheless, they also present a significant challenge for platform managers, who select high-quality innovations from a massive collection of information with diverse quality.

In this study, the authors employed a machine learning method to automatically collect a real dataset of 2,276 innovations and 30,004 detailed comments from the online platform of IdeaExchange and then conducted empirical experiments to verify the study hypothesis.

Results show that extraversion, conscientiousness and openness to experience positively and directly influenced the quality of their innovation. Furthermore, an individual’s social network position mediated among extraversion, neuroticism, conscientiousness and openness to experience and the quality of an innovation.

Results showed that extraversion, conscientiousness and openness to experience positively and directly influenced the quality of their innovation. Furthermore, an individual’s social network position mediated among extraversion, neuroticism, conscientiousness, openness to experience and the quality of innovations.

This study combined the Big Five personality traits theory and social network theory to examine the association between user intrinsic personality traits, social network position and the quality of their innovative ideas in the context of online innovation platforms. Additionally, the findings provide new insights for platform managers on how to select high-quality innovation information by considering user personality traits and their social network position.

Accessibility