Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis

Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
Hyogon Kim, Eunmi Lee, Donghee Yoo
Data Technologies and Applications, Vol. 59, No. 1, pp.19-40

This study aims to provide measurable information that evaluates a company’s ESG performance based on the conceptual connection between ESG, non-financial elements of a company and the UN Sustainable Development Goals (SDGs) for resolving global issues.

A novel data processing method based on the BERT is presented and applied to analyze the changes and characteristics of SDG-related ESG texts from companies’ disclosures over the past decade. Specifically, ESG-related sentences are extracted from 93,277 Form 10-K filings disclosed between 2010 and 2022 and the similarity between these extracted sentences and SDGs statements is calculated through sentence transformers. A classifier is created by fine-tuning FinBERT, a financial domain-specific pre-trained language model, to classify the sentences into eight ESG classes.

The quantified results obtained from the classifier reveal several implications. First, it is observed that the trend of SDG-related ESG sentences shows a slow and steady increase over the past decade. Second, large-cap companies relatively have a greater amount of SDG-related ESG disclosures than small-cap companies. Third, significant events such as the COVID-19 pandemic greatly impact the changes in disclosure content.

This study presents a novel approach to textual analysis using neural network-based language models such as BERT. The results of this study provide meaningful information and insights for investors in socially responsible investment and sustainable investment and suggest that corporations need a long-term plan regarding ESG disclosures.

Accessibility